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Abstract Most existing methods of quadratically constrained quadratic optimiza-
tion actually solve a refined linear or convex relaxation of the original problem. It
turned out, however, that such an approach may sometimes provide an infeasible solu-
tion which cannot be accepted as an approximate optimal solution in any reasonable
sense. To overcome these limitations a new approach is proposed that guarantees
a more appropriate approximate optimal solution which is also stable under small
perturbations of the constraints.

Keywords Nonconvex global optimization · Quadratic optimization under qua-
dratic constraints · Branch-reduce-and-bound successive incumbent transcending
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1 Introduction

A large number of problems arising from applications in diverse fields can be for-
mulated as nonconvex quadratically constrained quadratic optimization problems of
the form

(QQP)
min f0(x)

s.t. fk(x) ≥ 0 k = 1, . . . , m, x ∈ C,

where C ⊂ R
n is a polyhedron, and each fk(x), k = 0, 1, . . . , m, is a quadratic function:

fk(x) =
∑

i<j

ck
ijxixj +

∑

i

ck
i x2

i +
∑

i

dk
i xi + bk.

We will assume that C is contained in a box [a, b] := {a ≤ x ≤ b} ⊂ R
n+.
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As is well known, linear mixed 0-1, bilinear, fractional, polynomial, bilevel, gen-
eralized linear complementarity problems, can be reformulated as special cases of
(QQP) [6, 13]. In view of its interest both from a theoretical and practical viewpoint,
this problem has in recent years attracted the attention of many researchers. Among
the best known numerical studies devoted to (QQP), we should mention the works
[1, 2, 4, 7, 8–12].

In all these works, however, robustness is never a matter of serious concern. Most
algorithms so far developed in the literature solve a more or less refined relaxation
of (QQP) and provide an approximate optimal solution which is believed, without
any guarantee, to be close to the exact optimum. However, as has been shown in
[16, 17] (see Section 2 below) such an approximate optimal solution may turn out in
certain cases to be so far from the exact optimum that it can hardly be accepted as an
approximation of the latter. This poses the necessity to re-examine the approximation
concept so far commonly used and stresses the importance of robustness for practical
implementation of global optimization methods. Motivated by these considerations,
a robust approach to nonconvex global optimization has been proposed in [16] and
further improved in [17].

In the present paper, we will specialize this robust approach to (QQP) and dem-
onstrate its practical applicability on nontrivial examples taken from the literature.
Basically, the approach consists in transforming (QQP) into a monotonic optimization
problem and applying a special procedure of monotonic optimization earlier devel-
oped in [14, 15] to compute a robust optimal solution to a problem derived from the
original problem just by omitting the isolated, hence instable, feasible solutions.

The paper is organized as follows. After the Introduction, in Sect. 2 we show a
potential drawback of the approximation scheme underlying most existing methods
of nonconvex quadratic optimization. Section 3 deals with the conversion of (QQP)
into a form amenable to monotnic optimization. Section 4 introduces the new con-
cept of essential optimality which should be more easily implementable and more
appropriate than the usual concept of optimality. The search for an essential optimal
solution is achieved by successive application of a special procedure for transcend-
ing an incumbent. Section 5 describes this procedure. In Section 6 this procedure is
incorporated into an algorithm for solving (QQP) to be referred to as the Successive
Incumbent Transcending (SIT) algorithm. Section 7 closes the paper with an instruc-
tive numerical example and some preliminary computational results illustrating the
practicality of the approach.

2 Drawbacks of common approaches

Since the constraint set of (QQP) is nonconvex, finding a feasible solution is almost as
difficult a task as solving the problem itself. Therefore, except in rare special cases, in
finitely many steps, a numerical method can only guarantee an approximate optimal
solution, i.e. a solution which is close, in some acceptable sense, to the global optimum.

In most approaches so far commonly adopted, the nonconvex feasible set is relaxed
to a polyhedron (linear relaxation) or to a convex, easily computable, set (convex
relaxation). Given a tolerance ε > 0, any point x that is feasible to the problem

(QQP(ε)) min{f0(x)| fk(x)+ ε ≥ 0, k = 1, . . . , m, x ∈ C}
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is called an ε-approximate feasible solution. Then the approximate problem to substi-
tute for (QQP) is to find an ε-approximate optimal solution, i.e. an optimal solution of
the ε-approximate problem (QQP(ε)). Although this has become a common practice
in nonconvex global optimization, most people do not seem to be aware of the pitfall
behind this approximation scheme.

Consider for example the quadratic program depicted in Fig. 1, where the objective
function is f (x) and the constraints are gi(x) ≥ 0 (i = 1, 2, 3), a ≤ x ≤ b. The optimal
solution is x∗, while the point x̄ is infeasible, but almost feasible:

g1(x̄) = 0, g2(x̄) = 0, g3(x̄) = −δ

for some small δ > 0. If ε > δ then x̄ is feasible to the ε-relaxed problem, and will be
accepted as an ε-approximate optimal solution, though it is quite far from the exact
optimal solution x∗. But if ε < δ then x̄ is no longer feasible to the ε-relaxed problem
and the ε-approximate solution will come close to x∗.

Thus, even for regular problems (problems whose feasible set is the closure of its
interior), the ε-relaxation approach may give an incorrect optimal solution if ε is not
sufficiently small. The trouble is that in practice we often do not know what exactly
means “sufficiently small,” i.e. we do not know how small the tolerance should be to
guarantee a correct approximate optimal solution.

Furthermore, in many cases an ε-approximate optimal solution, i.e. an optimal
solution of QQP(ε), cannot be computed in finitely many steps. Therefore, a second
level of approximation is needed. Given η > 0, a feasible solution x̃ to QQP(ε) such
that f0(x̃) ≤ min(QQP(ε)+ η is referred to as an (ε, η)-optimal solution of (QQP). In
finitely many steps only such an (ε, η)-optimal solution can be guaranteed. Again it is
often not easy to determine the appropriate values of ε and η to guarantee a correct
approximate optimal solution.

Last but not least, most algorithms so far developed for (QQP) proceed by branch
and bound, with lower bounding based on outer approximation. It follows from the
above discussion that it may quite happen that a partition set chosen for further par-
titioning in some iteration contains no feasible solution. This may occur, for example,
if a partition set M contains no feasible point but an almost feasible point belongng to
the approximate feasible set: the lower bound over M is then a finite number and not
+∞ as it should be to prevent it from being a candidate for further partitioning. The
branch and bound algorithm in such cases may converge to an approximate optimal
solution which is infeasible.

Fig. 1 Inadequate
ε-approximate optimal
solution
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3 Monotonic reformulation

A function f : R
n → R is said to be increasing on the orthant R

n+ if f (x′) ≤ f (x)

whenever 0 ≤ x′ ≤ x, i.e. 0 ≤ x′i ≤ xi ∀i = 1, . . . , n. It is said to be a d.m. function on
R

n+ if f (x) = f1(x)− f2(x), where f1, f2 are increasing on R
n+.

Clearly a quadratic polynomial of n variables with positive coefficients is increasing
on R

n+. Since every quadratic polynomial can be written as a difference of two qua-
dratic polynomials with positive coefficients, it follows that each function fk(x), k =
0, 1, . . . , is a d.m. function on R

n+:

fk(x) = f+k (x)− f−k (x).

Therefore, the general problem (QQP) can be rewritten as the d.m. optimization
problem

min f+0 (x)− f−0 (x),
s.t. f+k (x)− f−k (x) ≥ 0, k = 1, . . . , m, x ∈ C.

Noting that f−0 (a) ≤ f−0 (x) ≤ f−0 (b) ∀x ∈ [a, b], we can also write the problem as

min f+0 (x)+ t,
s.t. t + f−0 (x) ≥ 0,

f+k (x)− f−k (x) ≥ 0, k = 1, . . . , m
x ∈ C, −f−0 (b) ≤ t ≤ −f−0 (a).

Finally, by changing the notation, one can thus convert (QQP) into the form

(P), min{f (x)| g(x) ≥ 0, x ∈ [a, b]},
where f (x) is an increasing quadratic function:

f (x) =
∑

i<j

cijxixj +
∑

i

cix2
i +

∑

i

dixi (1)

with all coefficients being positive, while

g(x) = min
k=1,...,m

{uk(x)− vk(x)} (2)

with uk(x), vk(x) being increasing quadratic functions such that

gk(x) := uk(x)− vk(x) =
∑

i<j

ck
ijxixj +

∑

i

ck
i x2

i +
∑

i

dk
i xi + bk. (3)

Note that the quadratic functions (1) and (3), are not the same as the original functions
fk(x) in (QQP), although the same notation has been used.

4 Essential optimal solution

From now on we assume that the original problem (QQP) has been converted to the
form (P), with f (x) quadratic increasing and g(x) defined as in (1), (2), and (3).

As was argued in Sect. 2, an algorithm giving only an ε-approximate optimal solu-
tion may not be quite correct. Furthermore, an isolated optimal solution even if com-
putable is often difficult to implement practically because of its instability under small
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perturbations of the constraints. Therefore, from a practical point of view only noniso-
lated feasible solutions should be of interest. This motivates the following definitions.

A nonisolated feasible solution x∗ of (P) is called an essential optimal solution if
f (x∗) ≤ f (x) for all nonisolated feasible solutions x of (P), i.e. if

f (x∗) = min{f (x)| x ∈ S∗},
where S∗ denotes the set of all nonisolated feasible solutions of (P). Assume

{x ∈ [a, b]| g(x) > 0} 
= ∅. (4)

For ε ≥ 0, an x ∈ [a, b] satisfying g(x) ≥ ε is then called an ε-essential feasible solution,
and a nonisolated feasible solution x̄ of (Q) is called an essential ε-optimal solution if
it satisfies

f (x̄)− ε ≤ inf{f (x)| g(x) ≥ ε, x ∈ [a, b]}. (5)

Clearly for ε = 0 a nonisolated feasible solution which is essentially ε-optimal is
optimal.

The search for an essential ε-optimal solution of (P) can be carried out according
to the following SIT scheme: starting from an initial essential feasible solution (the
incumbent, i.e. the best so far known), find a better essential feasible solution (tran-
scend the incumbent), then reiterate the operation until an evidence is obtained that
no better feasible solution than the current best exists.

Let γ be the objective function value of an essential feasible solution (of course
γ ≤ f (b)). Given ε > 0 we want to find, if possible, an essential feasible solution x
with f (x) ≤ γ − ε.

If f (a) ≥ γ − ε, then, since f is increasing, f (x) ≥ γ − ε ∀x ∈ [a, b], so there is no
x ∈ [a, b] with an objective function value less than γ − ε.

If f (a) < γ − ε and g(a) > 0, then a is an essential feasible solution with objective
function value less than γ − ε.

Therefore, barring these two cases, we can assume that

f (a) < γ − ε, g(a) ≤ 0. (6)

Consider then the following auxiliary problem associated with γ :

(Q/γ ) max{g(x)| f (x) ≤ γ − ε, x ∈ [a, b]}.
For our purpose of robust optimization an important feature of (Q/γ ) is that, due to
the assumption that f (x) is continuous and increasing, this problem has no isolated
feasible point. Solving (Q/γ ) is therefore simpler than solving the original problem (P).

Proposition 1 Assume (6).

(1) Any feasible solution x0 of (Q/γ ) such that g(x0) > 0 is a nonisolated feasible
solution of (P) with f (x0) ≤ γ − ε. In particular, if max (Q/γ ) > 0 then the optimal
solution x̂ of (Q/γ ) is a nonisolated feasible solution of (P) with f (x̂) ≤ γ − ε.

(2) If max (Q/γ ) < ε and γ = f (x̄) for some nonisolated feasible solution x̄ of (P), then
x̄ is an essential ε-optimal solution of (P). If max (Q/γ ) < ε and γ = f (b)+ ε then
the problem (P) is ε-essentially infeasible (i.e. has no essential feasible solution).

Proof (1) Since g(a) ≤ 0 < g(x0), we have x0 
= a and every x = a + λ(x0 − a) with
0 ≤ λ ≤ 1 satisfies a ≤ x ≤ x0. Then for every λ sufficiently close to 1, i.e. every x
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sufficiently close to x0, we have g(x) > 0, so x is a feasible solution of (P). Hence,
x0 is a nonisolated feasible solution of (P). Furthermore, f (x0) ≤ γ − ε because x0 is
feasible to (Q/γ ).

(2) If max(Q/γ ) < ε then

ε > sup{g(x)| f (x) ≤ γ − ε, x ∈ [a, b]}
so every x ∈ [a, b] such that g(x) ≥ ε, must satisfy f (x) > γ − ε. Therefore, if γ = f (x̄)

then

inf{f (x)| g(x) ≥ ε, x ∈ [a, b]} ≥ f (x̄)− ε,

i.e. x̄ is an essential ε-optimal solution. If γ = f (b)+ ε, then {x ∈ [a, b]| g(x) ≥ ε} = ∅,
i.e. the problem is ε-essentially infeasible. �

Thus, solving (Q/γ ) gives information about whether or not an essential feasible
solution x exists such that f (x) ≤ γ − ε.

5 Solving (Q/γ )

The procedure we propose for solving (Q/γ ) is a Branch-Reduce-and-Bound (BRB)
algorithm involving three basic operations: branching, reducing (the partition sets)
and bounding as follows:

(1) Branching proceeds by successive rectangular partition of the initial box M0 =
[a, b] according to an exhaustive subdivision rule, i.e. such that any infinite nested
sequence of partition sets generated through the algorithm shrinks to a singleton.
A popular exhaustive subdivision rule is the standard bisection.

(2) Reducing consists in reducing the size of a partition set M = [p, q] ⊂ [a, b]
without losing any feasible solution currently still of interest. The box [p′, q′]
obtained that way from M is referred to as a valid reduction of M.

(3) Bounding consists in estimating an upper bound β(M) for g(x) over the feasible
portion of (Q/γ ) contained in the valid reduction [p′, q′] of a given partition set
M = [p, q].

5.1 Valid reduction

At a given stage of the BRB algorithm for (Q/γ ), let [p, q] ⊂ [a, b] be a box generated
during the partitioning procedure and still of interest. The search for a nonisolated
feasible solution of (Q) in [p, q] such that f (x) ≤ γ − ε can then be restricted to the
set Bγ ∩ [p, q], where

Bγ := {x| f (x) ≤ γ − ε, g(x) ≥ 0}. (7)

Since g(x) = minj=1,...,m{uj(x) − vj(x)} with uj(x), vj(x) being increasing polynomials
(see (2) and (3)), we can also write

Bγ = {x|f (x) ≤ γ − ε, uj(x)− vj(x) ≥ 0 j = 1, . . . , m}.
The reduction operation aims at replacing the box [p, q]with a smaller box [p′, q′] ⊂

[p, q] without losing any point x ∈ Bγ ∩ [p, q], i.e. such that

Bγ ∩ [p′, q′] = Bγ ∩ [p, q].
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The box [p′, q′] satisfying this condition is referred to as a valid reduction of [p, q] and
denoted by red[p, q].

In the following Lemma, ei denotes the ith unit vector, i.e. a vector with 1 at the ith
position and 0 everywhere else.

Lemma 1 (1) If f (p) > γ − ε or minj{uj(q) − vj(p)} < 0, then Bγ ∩ [p, q] = ∅, i.e.
red[p, q] = ∅.

(2) If f (p) ≤ γ − ε, and minj{uj(q)− vj(p)} ≥ 0, then red[p, q] = [p′, q′] with

p′ = q−
n∑

i=1

αi(qi − pi)ei, q′ = p′ +
n∑

i=1

βi(qi − p′i)ei, (8)

where, for i = 1, . . . , n,

αi = sup{α| 0 < α ≤ 1, uj(q− α(qi − pi)ei) ≥ vj(p), j = 1, . . . , m}, (9)

βi = sup{β| 0 < β ≤ 1, vj(p′ + β(qi − p′i)ei) ≤ uj(q), j = 1, . . . , m,

f (p′ + β(qi − p′i)ei) ≤ γ − ε}. (10)

Proof (See e.g. [17] or [18])
Notice that, as can easily be verified, the box [p′, q′] = red[p, q] still satisfies

f (p′) ≤ γ − ε, min
j
{uj(q′)− vj(p′)} ≥ 0. (11)

5.2 Valid bounds

Given a box M := [p, q], supposed to have been reduced, we want to compute an
upper bound β(M) for

max{g(x)| f (x) ≤ γ − ε, x ∈ [p, q]}. (12)

Since g(x) = minj=1,...,m{uj(x)−vj(x)} and uj(x), vj(x) are increasing, an obvious upper
bound is

min
j=1,...,m

[uj(q)− vj(p)]. (13)

Although very simple, this bound suffices to ensure convergence of the algorithm, as
will be shortly seen. However, for a better performance of the procedure, we can use
any tight bound available. For instance, the following procedure may give a better
bound.

The subproblem (12) can be rewritten as

max{xn+1| xn+1 ≤ uk(x)− vk(x) (k = 1, . . . , m), f (x) ≤ γ − ε, p ≤ x ≤ q}.
Substituting (1) to f (x) and (3) to gk(x) = uk(x) − vk(x), and introducing the addi-
tional variables yij = xixj, i ≤ j, we obtain the following linear program (LP)(M) in
(x, xn+1, y) as a linear relaxation of (12):

maxx∈C∩[p,q] xn+1 s.t.
∑

i<j ck
ijyij +∑

i ck
i yii +∑

i dk
i xi + bk ≤ xn+1, k = 1, . . . , m

∑
i<j cijyij +∑

i ciyii +∑
i dixi ≤ γ − ε

yij − pjxi − pixj + pipj ≥ 0, ∀(i, j) ∈ K

yij − qjxi − qixj + qiqj ≥ 0, ∀(i, j) ∈ K
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yij − pjxi − qixj + qipj ≤ 0, ∀(i, j) ∈ K

yij − qjxi − pixj + piqj ≤ 0, ∀(i, j) ∈ K

yii − 2pixi + p2
i ≥ 0, ∀i ∈ N

yii − 2qixi + q2
i ≥ 0, ∀i ∈ N

yii − (pi + qi)xi + piqi ≤ 0, ∀i ∈ N

yii − (pi + qi)xi + (pi + qi)
2/4 ≥ 0, ∀i ∈ N

pi ≤ xi ≤ qi, i = 1, . . . , n,

where

K = {(i, j)| 1 ≤ i < j ≤ n, cij 
= 0, or ck
ij 
= 0 for some k ∈ {1, . . . , m}}

N = {i| 1 ≤ i ≤ n, ci 
= 0, or ck
i 
= 0 for some k ∈ {1, . . . , m}}

An important property of LP(M) is that its optimal value β(M) satisfies:

max{g(x)| f (x) ≤ γ − ε, x ∈ [p, q]} ≤ β(M) ≤ min
j=1,...,m

[uj(q)− vj(p)]. (14)

This follows from the fact that the constraints of LP(M) imply pipj ≤ yij ≤ qiqj ∀i, j,
and hence

∑
i<j ck

ijyij +∑
i ck

i yii +∑
i dk

i xi + bk ≤ uk(q)− vk(p) ∀k = 1, . . . , m.
More generally, we shall show in the next section that any lower bound β(M)

satisfying (14) ensures convergence of the algorithm.

6 A robust algorithm

Incorporating the above BRB procedure for (Q/γ ) into the SIT scheme yields the
following robust algorithm for solving (Q):
SIT Algorithm for (Q)

Step 0 If no feasible solution is known, let γ = f (b)+ ε; otherwise, let x̄ be the best
nonisolated feasible solution available, γ = f (x̄). Let P1 = {M1}, M1 = [a, b], R1 = ∅.
Set k = 1.
Step 1 For each box M ∈ Pk:

(1) Compute its valid reduction red M.
(2) Delete M if red M = ∅.
(3) Replace M by red M if red M 
= ∅.
(4) If redM = [p′, q′] then compute an upper bound β(M) for g(x) over the feasible

solutions in redM. (β(M) must satisfy β(M) ≤ minj=1,...,m[uj(q′) − vj(p′)], see
(14)). Delete M if β(M) < 0.

Step 1 Let R′k = Rk ∪ P ′k.
Step 2 Let P ′k be the collection of boxes that results from Pk after completion of
Step 1. Let R′k = Rk ∪ P ′k.
Step 3 If R′k = ∅ then terminate: x̄ is an ε-optimal solution of (Q) if γ = f (x̄)− ε,
or the problem (Q) is infeasible if γ = f (b)+ ε.
Step 4 If R′k 
= ∅, let [pk, qk] :=Mk ∈ argmax{β(M)|M ∈ R′k}, βk = β(Mk).
Step 5 If βk < ε then terminate: x̄ is an essential ε-optimal solution of (Q) if
γ = f (x̄), or the problem (Q) is ε-essentially infeasible if γ = f (b)+ ε.
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Step 6 If βk ≥ ε, compute λk = max{α| f (pk + α(qk − pk)) ≤ γ − ε} and let

xk = pk + λk(qk − pk).

6a) If g(xk) > 0 then xk is a new nonisolated feasible solution of (Q) with f (xk) ≤
γ − ε : if g(pk) < 0, compute the point x̄k where the line segment joining pk to xk

meets the surface g(x) = 0, and reset x̄← x̄k; otherwise, reset x̄← pk. Go to Step 7.
6b) If g(xk) ≤ 0, go to Step 7, with x̄ unchanged.

Step 7 Divide Mk into two subboxes by the standard bisection (or any bisection
consistent with the bounding M �→ β(M)). Let Pk+1 be the collection of these two
subboxes of Mk, Rk+1 = R′k\{Mk}. Increment k, and return to Step 1.

Proposition 2 The above algorithm terminates after finitely many steps, yielding either
an essential ε-optimal solution of (Q), or an evidence that the problem is essentially
infeasible.

Proof Since any feasible solution x with f (x) ≤ γ − ε = f (x̄) − ε must lie in some
box M ∈ R′k the event R′k = ∅ implies that no such solution exists, hence the con-
clusion in Step 3. If Step 5 occurs, so that βk < ε, then max(Q/γ ) < ε, hence the
conclusion in Step 5 (see Proposition 1). Thus the conclusions in Steps 3 and 5 are
correct. It remains to show that either Steps 3 (R′k = ∅) or 5 (βk < ε) must occur for
sufficiently large k. To this end, observe that in Step 6, since f (pk) ≤ γ − ε (see (11)),
the point xk exists and satisfies f (xk) ≤ γ − ε, so if g(xk) > 0, then by Proposition
1, xk is a nonisolated feasible solution with f (xk) ≤ f (x̄) − ε, justifying Step 6a (note
that x̄k is a nonisolated feasible solution at least as good as xk). Suppose now that
the algorithm is infinite. Since each occurrence of Step 6a decreases the current best
value at least by ε > 0 while f (x) is bounded below it follows that Step 6a cannot
occur infinitely often. Consequently, for all k sufficiently large, x̄ is unchanged, and
g(xk) ≤ 0, while βk ≥ ε. But, as k → +∞, we have, by exhaustiveness of the subdi-
vision, diamMk → 0, i.e. ‖qk − pk‖ → 0. Denote by x̃ the common limit of qk and pk

as k→+∞. Since

ε ≤ βk ≤ min
j=1,...,m

[uj(qk)− vj(pk)]

it follows that

ε ≤ lim
k→+∞

βk ≤ min
j=1,...,m

[uj(x̃)− vj(x̃)] = g(x̃).

But by continuity, g(x̃) = limk→+∞ g(xk) ≤ 0, a contradiction. Therefore, the algo-
rithm must be finite. �
Remark 1 The SIT Algorithm works its way to the optimum through a sequence of
better and better nonisolated solutions. If for some reason the algorithm has to be
stopped prematurely, some reasonably good feasible solution may have been already
obtained. This is one of its advantages over most existing algorithms, which may be
useless when stopped prematurely.

Remark 2 For regular problems (i.e. problems with no isolated feasible solutions),
an essential optimal solution is obviously an optimal solution in the usual sense.
From the computational complexity point of view the present SIT algorithm does
not differ much from the monotonic branch-reduce-and-bound algorithm developed
in [17].
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Case where there are equality constraints
So far we assumed (4), so that the feasible set has a nonempty interior. We now extend
the method to the case when there are equality constraints, e.g.

hl(x) = 0, l = 1, . . . , s (15)

(so that assumption (4) fails).
First, if some of these constraints are linear, they can be used to eliminate certain

variables. Therefore, without loss of generality we can assume that all the constraints
(15) are nonlinear. Since, however, in the most general case one cannot expect to
compute a solution of a nonlinear system of equations in finitely many steps, one
should be content with an approximate system

−δ ≤ hl(x) ≤ δ, l = 1, . . . , s,

where δ > 0 is the tolerance. In other words, a set of constraints of the form

gj(x) ≥ 0, j = 1, . . . , m,

hl(x) = 0, l = 1, . . . , s,

should be replaced by the approximate system

gj(x) ≥ 0, j = 1, . . . , m,

hl(x)+ δ ≥ 0, l = 1, . . . , s,

−hl(x)+ δ ≥ 0, l = 1, . . . , s.

The method presented in the previous sections can then be applied to the resulting
approximate problem. With g(x) = mink=1,...,m gk(x), h(x) = maxl=1,...,s |hl(x)|, the
required assumption is, instead of (4), {x ∈ [a, b]| g(x) > 0,−h(x) + δ > 0} 
= ∅. An
essential ε-optimal solution to the above defined approximate problem is then called
an essential (δ, ε)-optimal solution of (P).

Remark 3 Since any boolean constraint of the form x ∈ {0, 1}n can be rewritten as a
system of quadratic constraints:

xi(xi − 1) ≥ 0, 0 ≤ xi ≤ 1, i = 1, . . . , n

any boolean optimization problem can in principle be transformed into a quadratic
optimization problem. Nevertheless, such a problem should not be studied as a (QQP)
because its feasible set consists only of isolated points, among which the optimal solu-
tion should be selected. For these problems a special approach based on monotonic
optimization is currently available. (see [18])

7 Illustrative example and numerical results

The SIT algorithm, coded in C++, with CPLEX 8.0 for solving linear programs, was
tested on a number of nontrivial instances of problem (QQP) taken from the liter-
ature. Computational experiments were made on a PC Pentium IV 2.53GHz, RAM
256Mb DDR.

1. An interesting and instructive example is furnished by the following problem (to
be referred to as problem (A)) studied in [2]:
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min
x

z(x) := (12.626260(x12 + x13 + x14 + x15 + x16)

−1.231059(x1x12 + x2x13 + x3x14 + x4x15 + x5x16)

s.t. 50 ≤ z(x) ≤ 250;

−3.475xi + 100xj + .0975x2
i − 9.75xixj ≤ 0 i = 1, 2, 3, 4, 5, j = i+ 5; (∗)

−x6x11 + x7x11 − x1x12 + x6x12 ≥ 0, (∗∗)
50x7 − 50x8 − x1x12 + x2x13 + x7x12 − x8x13 = 0, (∗ ∗ ∗)
50x8 + 50x9 − x2x13 + x3x14 + x8x13 − x9x14 ≤ 500,

−50x9 + 50x10 − x3x14 + x4x15 − x8x15 + x9x14 ≤ 0,

50x4 − 50x10 − x4x15 − x4x16 + x5x16 + x10x15 ≤ 0,

50x4 − x4x16 + x5x16 ≥ 450, −x1 + 2x7 ≤ 1,
x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5, x6 ≤ x7, x8 ≤ x9 ≤ x10 ≤ x4,
0 ≤ x11 − x12 ≤ 50, 0.001 ≤ x6 ≤ 1,
1 ≤ x1 ≤ 8.03773157, 1 ≤ x7 ≤ 4.51886579, 10−7 ≤ x12 ≤ 100,
1 ≤ x2 ≤ 9, 1 ≤ x8 ≤ 9, 1 ≤ x13 ≤ 50,
4.5 ≤ x3 ≤ 9, 1 ≤ x9 ≤ 9, 50 ≤ x14 ≤ 100,
4.5 ≤ x4 ≤ 9, 1 ≤ x10 ≤ 9, 50 ≤ x15 ≤ 100,
9 ≤ x5 ≤ 10, 0.1 ≤ x11 ≤ 100, 10−7 ≤ x16 ≤ 50.

Following the RLT method, by introducing the additional variables y = (yij), with

yij = xixj (i, j = 1, . . . , n, i ≤ j) (16)

a (linear program) LP can be derived from problem (A) augmented with some implied
constraints, by replacing each polynomial

fk(x) =
∑

i<j

ck
ijxixj +

∑

i

ck
i x2

i +
∑

i

dk
i xi

with its linearization

gk(x, y) =
∑

i<j

ck
ijyij +

∑

i

ck
i yii +

∑

i

dk
i xi.

Problem (A) is thus equivalent to the LP with the additional nonconvex constraints
(16). A feasible solution (x, y) to LP satisfying

|yij − xixj| ≤ εr (i, j = 1, . . . , n, i ≤ j) (17)

is called an εr-approximate solution of (A). In other words, an εr-approximate solu-
tion is a feasible solution of the problem LPεr obtained by appending the constraints
(17) to LP . An εr-approximate solution (x∗, y∗) is called an (εr, εz)-optimal solution
if it is an εz-optimal solution of the problem LPεr .

By using a well devised branch and cut algorithm to solve problem (A), the follow-
ing (εr, εz)-optimal solution, for εr = εz = 10−5, with objective function value 174.788,
has been found in [2]:

x∗ = (8.03773, 8.161, 9, 9, 9, 1, 1.07026, 1.90837,

1.90837, 1.90837, 50.5042, .504236, 7.26387, 50, 50, 0).



568 J Glob Optim (2007) 37:557–569

However, this solution turned out to be infeasible, since it violates the constraints
(*) for i = 1, 3, 4, 5, and the constraint (**), with an error far exceeding the tolerance.

Furthermore, the (εr, εz)-optimal value 174.788 found in [2] is very far from the
true optimum. In fact, solving problem (A) by the SIT algorithm with tolerances
δ = 10−6, ε = 10−2, yields an (δ, ε)-optimal solution right at the first iteration

x̂ = (1, 9, 9, 9, 10, 0.001, 1, 1.156863, 1.156863, 1.156863, 0.1, 0, 1, 50, 50, 0)

with objective function value 156.219629 which is much inferior to 174.788.
All this once more illustrates the weakness of outer approximation methods for

nonconvex global optimization and the inadequacy of the concept of ε-approximate
solution as defined in [2].

Note that problem (A) is derived from a test problem in [3] by several modifications.
These modifications change an originally convex problem (a geometric program) into
a nonconvex one. Specifically one inequality constraint is changed into equality (***),
while five inequality constraints are reversed. By restoring the original inequality
constraints, but keeping the equality (***), the problem is still nonconvex because of
the presence of this equality. Solving this nonconvex quadratic problem by the SIT
algorithm, with tolerances δ = 10−6, ε = 10−5, yields, after 418 iterations, an essential
(δ, ε)-optimal solution

x̄ = (8.036214, 8.153175, 9, 9, 9, 0.999183, 1.065565, 1.908367,

1.908367, 1.908367, 49.854883, 0.470290, 7.272981, 50, 50, 0)

with objective function value 174.789648. These results agree with those reported in [3]
for the original geometric program—which is to be expected. In fact, since the inequal-
ity constraint in the geometric program that has become an equality constraint in the
nonconvex quadratic problem is in fact satisfied as equality by the optimal solution
of the geometric program, this change does not actually affect the optimal solution.
Computation by the SIT algorithm required 51.953 sec. and went through 165 cycles
of incumbent transcending.

2. Aside from the above problem from Audet et al. [2], we also tested the SIT
algorithm on a number of problems taken from Floudas et al. [5]. The results of these
preliminary experiments are reported in the table below. Columns n and m indicate
the number of variables and the number of constraints, respectively. Column Iteration
indicates the number of iterations, Cycle: number of cycles of incumbent transcending,
and Time: running time (in seconds). Tolerances: δ = 10−6, ε = 0.01.

Prob. n m Iteration Cycle Time Source

1 5 5 33 27 0.156 [5] 7.2.6
2 5 6 117 21 0.641 [5] 7.2.5
3 8 6 47 16 0.672 [5] 3.2
4 8 7 2,874 422 39.625 [5] 5.2.4
5 9 7 10 6 0.219 [5] 5.2.2, case 1
6 9 7 42 31 0.859 [5] 5.2.2, case 2
7 9 7 10 4 0.234 [5] 5.2.2, case 3
8 9 12 115 33 2.313 [5] 7.2.2
9 17 22 110 12 12.39 [2]
10 22 25 47 8 12.61 [5] 5.3.2
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